Generative AI

Ukuqhathanisa amamodeli / ama-Optical Character Recond) amamodeli / amasistimu ngo-2025

Ukuqashelwa komlingiswa we-Optical kusuke kuvela ku-Plain Text Extraction ku-Press intelligence. Izinhlelo zanamuhla kufanele zifunde ukuskena kanye nama-PDF edijithali ngokudlula okukodwa, gcina ukwakheka, thola amatafula, akhiphe amanani ababili, futhi asebenze ngolunye ulimi. Amaqembu amaningi manje afuna futhi i-OCR engondla amapayipi we-rag ne-ejenti ngqo. Ngo-2025, amasistimu ayi-6 amboza imithwalo yangempela yomsebenzi wangempela:

  1. I-Google Cloud Preen Ai, I-Enterprise Donser OCR
  2. I-Amazon Textract
  3. I-Microsoft Azure ai press integraph intect intect intelligence
  4. Injini ye-abbyny finereareader kanye ne-flexicapture
  5. I-PaddlerCOCC 3.0
  6. I-Deepseek OCR, Izimo Zokucindezela Optical

Inhloso yalokhu kuqhathanisa akuyona ukuwabheka ku-metric eyodwa, ngoba ahlose izingqinamba ezihlukile. Umgomo ukukhombisa ukuthi yiluphi uhlelo oluzolusebenzisa ivolumu yedokhumenti elinikeziwe, imodeli yokuhambisa, isethi yolimi, ne-Downstream AI Stack.

Ukuqhathanisa amamodeli / ama-Optical Character Recond) amamodeli / amasistimu ngo-2025
Umthombo Wezithombe: MarktechPost.com

Ubukhulu bokuhlola

Siqhathanisa ngezilinganiso ezi-6 ezizinzile:

  1. Ikhwalithi ye-OCR eyinhloko Kuskenwa, kuthathwe izithombe nama-pdfs wedijithali.
  2. Ukwakheka kanye nesakhiwo Amatafula, ama-keli asemqoka ngababili, amamaki wokukhetha, i-oda lokufunda.
  3. Ukumbozwa kolimi nokubhala ngesandla.
  4. Imodeli yokuhambisa Iphethwe ngokuphelele, isitsha, ezakhiweni, ze-self zisingathwe.
  5. Ukuhlanganiswa ukuba kuphelele Nge-LLM, Rag ne-IDP Amathuluzi.
  6. Izindleko ezikalini.

1. Idokhumenti ye-Google Cloud AI, I-Enterprise Donser OCR

Idokhumenti yebhizinisi le-Google i-OCR ithatha ama-PDF nezithombe, noma ngabe iskene noma idijithali, futhi ibuyisa umbhalo ngesakhiwo, amatafula, amanani asemqoka ngababili kanye namamaki wokukhetha kanye namamaki okukhethwayo. Iphinde iveze ukuqashelwa kokubhala ngesandla ngezilimi ezingama-50 futhi ingathola isitayela sezibalo nefonti. Lezi zindaba zezitatimende zezezimali, izinhlobo zokufundisa kanye nemilando. Ukukhishwa kuhlelwe i-json ehlelwe ukuthi ingathunyelwa ku-vertex ai noma noma yiluphi uhlelo lwe-rag.

Amandla

  • I-OCR ephezulu ye-OCR kumadokhumenti ebhizinisi.
  • Igrafu yokuhlelwa okuqinile nokutholwa kwetafula.
  • Ipayipi elilodwa lama-PDF edijithali futhi askena, agcina ukungenisa elula.
  • Ibanga le-Enterprise, nge-IAM ne-Data Residency.

Ubungcele

  • Kuyinsizakalo yefu le-metered google.
  • Izinhlobo zemibhalo ngokwezifiso zisadinga ukucushwa.

Sebenzisa lapho Idatha yakho isivele iku-Google Cloud noma lapho kufanele ulondoloze ukwakheka kwesigaba sakamuva se-LLM.

I-Textract ihlinzeka ngemigwaqo emibili ye-API, ivumelanisa amadokhumenti amancane kanye ne-asynchronous ama-PDF amakhulu we-multipage. Ikhipha umbhalo, amatafula, amafomu, amasiginesha futhi ibabuyisele njengamabhulokhi ngobudlelwano. I-Analyzedocumememememememememeume ngo-2025 nayo ingaphendula imibuzo ekhasini elenza lula invoice noma isimangalo. Ukuhlanganiswa ne-S3, i-Lambda kanye nemisebenzi yesinyathelo kwenza kube lula ukuguqula i-textract ibe yipayipi lokungenisa.

Amandla

  • Ithebula elinokwethenjelwa kanye nokukhishwa kwenani elibalulekile lamaresidi, ama-invoice kanye namafomu womshuwalense.
  • Sula ukuvumelanisa nemodeli yokusebenza kwe-batch.
  • Ukuhlanganiswa kwe-AWS okuqinile, okuhle kwe-Service ne-IDP ku-S3.

Ubungcele

  • Ikhwalithi yesithombe inomphumela obonakalayo, ngakho-ke ukulayishwa kwekhamera kungadinga ukufezeka.
  • Ukwenza ngokwezifiso kukhawulelwe kakhulu kunamamodeli we-azure ngokwezifiso.
  • Kukhiywe ku-AWS.

Sebenzisa lapho Ukulayisha komsebenzi sekuvele ku-AWS futhi udinga i-JSON ehlelekile ukuphuma ebhokisini.

3. I-Microsoft Azure ai press integraph intect integrance

Inkonzo ka-Azure, eqanjwe kabusha kusuka kuFomu Loolizer, ihlanganisa i-OCR, ukwakheka okujwayelekile, amamodeli akhethiwe kanye namamodeli we-neural noma wethempulethi. Ukukhishwa kwemali okungeziwe kwe-2025 futhi ufunde iziqukathi, ngakho-ke amabhizinisi angasebenzisa imodeli efanayo ezakhiweni. Imodeli yesakhiwo ikhipha umbhalo, amatafula, amamaki okukhetha nesakhiwo sedokhumenti futhi yakhelwe ukucubungula okwengeziwe nge-LLMS.

Amandla

  • Kuhle kakhulu kumamodeli wedokhumenti yangokwezifiso yeklasi ngomugqa wamafomu webhizinisi.
  • Iziqukathi ze-hybrid kanye nomoya motod geidments.
  • Amamodeli angabasebenzi ama-invoice, amaresidi nakumazisi.
  • Hlanza okukhipha i-JSON.

Ubungcele

  • Ukunemba kwemibhalo engeyona eyesiNgisi kusengaba ngemuva kwe-Abbyy.
  • Amanani nokusebenzisa okubonakalayo kumele kuhlelwe ngoba kusewumkhiqizo wokuqala wefu.

Sebenzisa lapho Udinga ukufundisa uhlelo izifanekiso zakho noma uma uyisitolo seMicrosoft esifuna imodeli efanayo e-Azure nasezakhiweni.

4. Injini ye-abbyny finerearer kanye ne-flexicapture

U-Abbyby uhlala efanele ngo-2025 ngenxa yezinto ezi-3, ukunemba emibhalweni ephrintiwe, ukuhlanganiswa kolimi kakhulu, kanye nokulawula okujulile kokuqanjwa kokwenziwa kwangaphambili nokugoqa. Injini yamanje kanye nemikhiqizo yeFlexicapture Ukuxhaswa kwezilimi ezingama-190 nezinye izindlela, idatha ehleliwe, futhi ingafakwa ku-Windows, i-Linux kanye ne-VM. U-Abbyy futhi unamandla emikhakheni elungisiwe lapho idatha ingakwazi ukuphuma khona ezakhiweni.

Amandla

  • Ikhwalithi ephezulu kakhulu yokuqashelwa kwizinkontileka ezihloliwe, amaphasiphothi, amadokhumenti amadala.
  • Ulimi olukhulu kakhulu olusethwe kulokhu kuqhathanisa.
  • I-Flexicapture ingahle ihlelwe kumadokhumenti ahlangene aphikisayo.
  • Ama-sdk avuthiwe.

Ubungcele

  • Izindleko zelayisense ziphakeme kunomthombo ovulekile.
  • Umbhalo wesehlakalo sokufunda esijulile akusona ukugxila.
  • Ukukala kumakhulu ama-node kudinga ubunjiniyela.

Sebenzisa lapho Kufanele ugijime ezakhiweni, kufanele ucubungule izilimi eziningi, noma kufanele udlulise ukucwaningwa kokutholwa.

I-5. I-PADDERCOCC 3.0

I-PaddleDlecc 3.0 iyithuluzi elivulekile le-Apache elivulekile le-Apache elihlose ukuvala izithombe nama-PDF ku-LLM Idatha Ehlelekile. Kuthunyelwa nge-PP OCRV5 yokuqashelwa kwezilimi eziningi, i-PP ehlelekile ye-PROBRODICE YOKUFUNDA KANYE NOKUXHUMANISA ITHEBELA, kanye ne-PP ChatVVVVVE yokwakhiwa kwemininingwane ebalulekile. Ixhasa izilimi eziyi-100 zokuhlanganisa, isebenza ku-CPU ne-GPU, futhi inezinhlobonhlobo zeselula nezomkhawulo.

Amandla

  • Imahhala futhi ivulekile, akukho zindleko zekhasi ngalinye.
  • Ngokushesha ku-GPU, esebenzisekayo emaphethelweni.
  • Ihlanganisa ukutholwa, ukuqashelwa kanye nokwakheka kuphrojekthi eyodwa.
  • Umphakathi osebenzayo.

Ubungcele

  • Kufanele usebenzise, ​​uqaphe futhi uvuselele.
  • Ngezakhiwo zase-Europe noma zezezimali uvame ukudinga ukuhambisa kabusha noma ukuhleleka okuhle.
  • Ezokuphepha nokuqina zingumsebenzi wakho.

Sebenzisa lapho Ufuna ukulawulwa okugcwele, noma ufuna ukwakha insizakalo ye-self ehlolwe idokhumenti yezobunhloli ye-LLM Rag.

I-6. I-Expseek OCR, izimo zokucindezela

Kukhishwe i-Occenseek OCOCTOBER 2025. Akuyona i-OCR yakudala. Kuyimodeli yolimi lwe-LLM Centeric Vision yolimi olucindezela umbhalo omude nemibhalo ezithombeni eziphezulu zokuxazulula, bese kubahlukanisa. Ikhadi lemodeli yomphakathi kanye ne-blog kubikwa cishe amaphesenti angama-97 okuqinisa ukunemba ngezikhathi eziyi-10 ukungqubuzana kanye namaphesenti angama-60 ngezikhathi ezingama-20 ukucindezela. Kunelayisense ye-MIT, yakhelwe ezungeze i-decoder ye-3B, futhi esele isekelwe ku-vllm futhi ibambe ubuso. Lokhu kwenza kube mnandi kumaqembu afuna ukunciphisa izindleko zethokheni ngaphambi kokubiza i-LLM.

Amandla

  • I-Self ibanjelwe, i-GPU isilungile.
  • Kuhle kakhulu kumongo omude kanye namatafula ahlanganisiwe ahlanganisiwe ngoba ukucindezelwa kwenzeka ngaphambi kokuqunjelwa.
  • Ilayisense elivulekile.
  • Ifanelana nezitabane ze-agentic zesimanje.

Ubungcele

  • Alukho uphawu lomphakathi olujwayelekile okwamanje olubeka ku-Google noma ama-AWS, ngakho-ke amabhizinisi kumele aqhubeke nokuhlolwa kwawo.
  • Idinga i-GPU nge-vram eyanele.
  • Ukunemba kuncike ekulinganiseni okukhethiwe kokucindezelwa.

Sebenzisa lapho Ufuna i-OCR eyenzelwe amapayipi e-LLM kunokuba i-Archive Digitization.

Ukubhekisa ukuqhathanisa ikhanda

Ubuso I-Google Cloud Preen Ai (I-Enterprise Donser OCR) I-Amazon Textract I-Azure ai press intelligence Injini ye-abbyny finerearer / flexicapture I-PaddlerCOCC 3.0 I-Deepseek OCR
Umsebenzi oyisisekelo I-OCR yokuskena kanye nama-pdfs wedijithali, ibuyisela umbhalo, ukwakheka, amatafula, ama-KVP, amamaki wokukhetha I-OCR yombhalo, amatafula, amafomu, omazisi, ama-invoice, amaresidi, nge-sync ne-async apis Amamodeli we-OCR kanye namamodeli wangokwezifiso, ukwakheka, iziqukathi zezakhiwo Ukunemba okunemba okuphezulu kwe-OCR nokuthwebula amadokhumenti amakhulu, izilimi eziningi, ezindaweni zomsebenzi Umthombo ovulekile we-OCR ne-PRODOD DORSITING, PP OCRV5, PP I-PASPROCTV3, PP Chatokv4 I-LLM Centric OCR ecindezela izithombe zedokhumenti futhi ibavimbele ukungcola isikhathi eside ai
Umbhalo nokwakheka Amabhlogo, izigaba, imigqa, amagama, izimpawu, amatafula, ngababili abasezingeni eliphezulu, amamaki wokukhetha Umbhalo, ubudlelwano, amatafula, amafomu, izimpendulo zombuzo, ukuhlaziywa kokuboleka Umbhalo, amatafula, i-KVP, amamaki wokukhetha, ukukhishwa kwesibalo, i-Json ehlelekile, imodeli ye-V4 Layout Ukugqwayiza, amatafula, amasimu efomu, ukuhlukaniswa nge-flexicapture Amatafula wesakhiwo nokwakha kabusha amatavu kanye nesikhundla sedokhumenti, amamojula we-kie ayatholakala Yenza kabusha okuqukethwe ngemuva kokucindezelwa okubonakalayo, okuhle amakhasi amade, kudinga ukuhlolwa kwendawo
Ukuloba ngesandla Ephrintiwe futhi ukubhala ngesandla kwezilimi ezingama-50 Ukubhala ngesandla ngamafomu nombhalo wamahhala Umbhalo wesandla osekelwe kumamodeli wokufunda nokwakheka Ephrintiwe eqine kakhulu, ukubhala ngesandla okutholakala ngezifanekiso zokuthwebula Kusekelwa, kungadinga ukushukunyiswa kwesizinda Kuya ngesilinganiso sesithombe nokucindezelwa, akukabikwa
Izilimingqi Izilimi ezingama-200 + OCR, izilimi ezingama-50 zokubhala ngesandla Izilimi eziyinhloko zebhizinisi, ama-invoice, ama-ID, amaresidi Izilimi ezinkulu Zebhizinisi, Ukunwebeka ku-V4.x Izilimi eziyi-190- 201 Kuya ngohlobo, ububanzi kuleli thebula Izilimi eziyi-100 + ku-V3.0 Stack Izilimi eziningi nge-VLM decoder, ukumboza okuhle kodwa hhayi ngokuphelele ukushicilelwa, kuhlolwe ngephrojekthi ngayinye
Ukuthunyelwa Kuphethwe ifu le-Google eliphelele AWS ephethwe ngokugcwele, imisebenzi evumelanayo ne-asynchronous I-APPED AZURE Service Plus Plus and Lakeut Iziqukathi (2025) ezakhiweni Ezakhiweni, i-VM, ifu lekhasimende, i-SDK centric I-Self Ibanjelwe, i-CPU, GPU, Edge, Iselula I-Self ibanjelwe, i-GPU, vllm isilungile, Ilayisense yokuqinisekisa
Indlela yokuhlanganisa Ukuthumela ngaphandle i-JSON i-JSON to Vertex AI, Greequery, Rag Pipelines Obomdabu ku-S3, Lambda, Yesinyathelo Imisebenzi, AWS IDP I-Azure ai studio, izinhlelo zokusebenza ezine-logic, ama-aks, amamodeli wangokwezifiso, iziqukathi I-BPM, i-RPA, i-ECM, amapulatifomu e-IDP Amapayipi ePython, izitaki ezivulekile ze-rag, izinsizakalo zedokhumenti yangokwezifiso I-LLM ne-Agent Stacks efuna ukunciphisa amathokheni kuqala, i-VLLM ne-HF asekelwe
Imodeli yezindleko Khokha ngamakhasi ayi-1 000, izaphulelo zevolumu Khokha ikhasi ngalinye noma idokhumenti, ukukhokhisa ama-AWS Ukusetshenziswa okusekelwe, amalayisense esitsheni sama-run wendawo Ilayisense yokuhweba, iseva ngayinye noma ngevolumu ngayinye Mahhala, infra kuphela I-repo yamahhala, izindleko ze-GPU, ilayisense lokuqinisekisa
Kufanelekile Kuskena okuxubile kanye nama-PDF edijithali ku-Google Cloud, i-Layout egciniwe Ukufakwa kwe-AWS kwama-invoice, amaresidi, amaphakheji wemalimboleko esikalini Izitolo zeMicrosoft ezidinga amamodeli wangokwezifiso kanye ne-hybrid Kulawulwa, izilimi eziningi, ekwakhiweni kwezakhiwo I-Self Host Idokhunte yedokhumenti ye-LLM ne-Rag Amapayipi amade we-LLM amapayipi adinga ukucindezelwa okubonakalayo

Yini okufanele uyisebenzise lapho

  • I-IDP yamafu kuma-invoice, amaresidi, amafomu ezokwelashwa: I-Amazon Textract noma i-Azure Public Intelligence.
  • Ukuskena okuxubile kanye nama-PDF edijithali wamabhange kanye nama-telcos ku-Google Cloud: Idokhumenti ye-Google Playgrise AI Enterprise OCR.
  • Ukulondolozwa kukahulumeni noma umshicileli ngezilimi eziyi-150 kanye nefu: Injini ye-abbyny finerearer kanye ne-flexicapture.
  • Inkampani yokuqalisa noma yabezindaba yakha i-rag yayo nge-PDFS: I-PaddlerCOCC 3.0.
  • Ipulatifomu le-LLM elifuna ukuncipha umongo ngaphambi kokuphaphana: I-Deepseek OCR.

I-Google Donswation AI, i-Amazon Tescract, kanye ne-Azure Ai Press intelligence konke ukuletha ukuhlelwa kwe-OCR ngamatafula, kanti amamaki we-Flexicapy akhipha kalula e-XML kanye ne-New JSON ROFTER NOKWENZA LAMANDLA. I-PaddleDOCCC 3.0 ihlinzeka nge-Apache Ilayisensi ye-PP OCRV5, i-PP ehlelekile ye-Procurev3, ne-PP Chatokv4 yokuphangwa kwedokhumenti okusingathwa. I-Deepseek OCR ibika ama-97% ukucacisa ukucacisa okungaphansi kwe-10x Compression kanye nama-60% ku-20x, ngakho-ke amabhizinisi kumele asebenze amabhentshi endawo ngaphambi kokukhishwa kwemisebenzi yokukhiqiza. Sekukonke, i-OCR ngo-2025 iyinhloli yedokhumenti yokuqala, ukuqashelwa okwesibili.


Izinkomba:


UMichal Sutter ungumsebenzi wesayensi yedatha ene-Master of Science ku-Data Science evela e-University of PADOVA. Ngesisekelo esiqinile ekuhlaziyeni kwezibalo, ukufunda ngomshini, kanye nobunjiniyela bedatha, ama-Mikhali ama-Excels ekuguquleni imininingwane eyinkimbinkimbi ekutholeni okusebenzayo.

Landela uMarktechpost: Sengeze njengomthombo owuthandayo ku-Google.

Source link

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button