The implementation of the Code for AI for AI for the murder of Python live and the automatic verification

In this lesson, we will find out how to combine developed AGENT AGENTIA power, which are not being Delivered in Python production effects and consequences of verification, addressing compliance activities. By combining Langchain's agent's agent with Antthropic's Claude API, we create the final solution to produce the Python code and catch the output effect, and automatically confirm the results against the expected properties or testing facilities. This “Writing → Run Run → Release” Enables you to improve solid analysis, algorithms, and simple ML pipes with confidence in all steps.
!pip install langchain langchain-anthropic langchain-core anthropic
We include a framework of the Core Langchain and the integration of the principal and its main services, to ensure that both Tools at Agent Orchestine (Langchain-Core) and Claudude-Anthropic, Anthropic) are available in your area.
import os
from langchain.agents import create_react_agent, AgentExecutor
from langchain.tools import Tool
from langchain_core.prompts import PromptTemplate
from langchain_anthropic import ChatAnthropic
import sys
import io
import re
import json
from typing import Dict, Any, List
We bring everything needed to create our freed style agent: OS Access to the Environment, Langchain's Agent Orecunts (creating_a agent) Chainthropic Chatthropic client. Common Python (Sys, I, R, JSon) Patth i / O capture, common expressions, and typing, while providing the clear code designs, of the additional code.
class PythonREPLTool:
def __init__(self):
self.globals_dict = {
'__builtins__': __builtins__,
'json': json,
're': re
}
self.locals_dict = {}
self.execution_history = []
def run(self, code: str) -> str:
try:
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = captured_output = io.StringIO()
sys.stderr = captured_error = io.StringIO()
execution_result = None
try:
result = eval(code, self.globals_dict, self.locals_dict)
execution_result = result
if result is not None:
print(result)
except SyntaxError:
exec(code, self.globals_dict, self.locals_dict)
output = captured_output.getvalue()
error_output = captured_error.getvalue()
sys.stdout = old_stdout
sys.stderr = old_stderr
self.execution_history.append({
'code': code,
'output': output,
'result': execution_result,
'error': error_output
})
response = f"**Code Executed:**n```pythonn{code}n```nn"
if error_output:
response += f"**Errors/Warnings:**n{error_output}nn"
response += f"**Output:**n{output if output.strip() else 'No console output'}"
if execution_result is not None and not output.strip():
response += f"n**Return Value:** {execution_result}"
return response
except Exception as e:
sys.stdout = old_stdout
sys.stderr = old_stderr
error_info = f"**Code Executed:**n```pythonn{code}n```nn**Runtime Error:**n{str(e)}n**Error Type:** {type(e).__name__}"
self.execution_history.append({
'code': code,
'output': '',
'result': None,
'error': str(e)
})
return error_info
def get_execution_history(self) -> List[Dict[str, Any]]:
return self.execution_history
def clear_history(self):
self.execution_history = []
The Pythonrepltool includes the valid Python Repl for a formatted container, including code made, any exit uniqueness or errors, provides an obvious response, providing feedback for all riding between our agent.
class ResultValidator:
def __init__(self, python_repl: PythonREPLTool):
self.python_repl = python_repl
def validate_mathematical_result(self, description: str, expected_properties: Dict[str, Any]) -> str:
"""Validate mathematical computations"""
validation_code = f"""
# Validation for: {description}
validation_results = {{}}
# Get the last execution results
history = {self.python_repl.execution_history}
if history:
last_execution = history[-1]
print(f"Last execution output: {{last_execution['output']}}")
# Extract numbers from the output
import re
numbers = re.findall(r'd+(?:.d+)?', last_execution['output'])
if numbers:
numbers = [float(n) for n in numbers]
validation_results['extracted_numbers'] = numbers
# Validate expected properties
for prop, expected_value in {expected_properties}.items():
if prop == 'count':
actual_count = len(numbers)
validation_results[f'count_check'] = actual_count == expected_value
print(f"Count validation: Expected {{expected_value}}, Got {{actual_count}}")
elif prop == 'max_value':
if numbers:
max_val = max(numbers)
validation_results[f'max_check'] = max_val <= expected_value
print(f"Max value validation: {{max_val}} <= {{expected_value}} = {{max_val <= expected_value}}")
elif prop == 'min_value':
if numbers:
min_val = min(numbers)
validation_results[f'min_check'] = min_val >= expected_value
print(f"Min value validation: {{min_val}} >= {{expected_value}} = {{min_val >= expected_value}}")
elif prop == 'sum_range':
if numbers:
total = sum(numbers)
min_sum, max_sum = expected_value
validation_results[f'sum_check'] = min_sum <= total <= max_sum
print(f"Sum validation: {{min_sum}} <= {{total}} <= {{max_sum}} = {{min_sum <= total <= max_sum}}")
print("nValidation Summary:")
for key, value in validation_results.items():
print(f"{{key}}: {{value}}")
validation_results
"""
return self.python_repl.run(validation_code)
def validate_data_analysis(self, description: str, expected_structure: Dict[str, Any]) -> str:
"""Validate data analysis results"""
validation_code = f"""
# Data Analysis Validation for: {description}
validation_results = {{}}
# Check if required variables exist in global scope
required_vars = {list(expected_structure.keys())}
existing_vars = []
for var_name in required_vars:
if var_name in globals():
existing_vars.append(var_name)
var_value = globals()[var_name]
validation_results[f'{{var_name}}_exists'] = True
validation_results[f'{{var_name}}_type'] = type(var_value).__name__
# Type-specific validations
if isinstance(var_value, (list, tuple)):
validation_results[f'{{var_name}}_length'] = len(var_value)
elif isinstance(var_value, dict):
validation_results[f'{{var_name}}_keys'] = list(var_value.keys())
elif isinstance(var_value, (int, float)):
validation_results[f'{{var_name}}_value'] = var_value
print(f"✓ Variable '{{var_name}}' found: {{type(var_value).__name__}} = {{var_value}}")
else:
validation_results[f'{{var_name}}_exists'] = False
print(f"✗ Variable '{{var_name}}' not found")
print(f"nFound {{len(existing_vars)}}/{{len(required_vars)}} required variables")
# Additional structure validation
for var_name, expected_type in {expected_structure}.items():
if var_name in globals():
actual_type = type(globals()[var_name]).__name__
validation_results[f'{{var_name}}_type_match'] = actual_type == expected_type
print(f"Type check '{{var_name}}': Expected {{expected_type}}, Got {{actual_type}}")
validation_results
"""
return self.python_repl.run(validation_code)
def validate_algorithm_correctness(self, description: str, test_cases: List[Dict[str, Any]]) -> str:
"""Validate algorithm implementations with test cases"""
validation_code = f"""
# Algorithm Validation for: {description}
validation_results = {{}}
test_results = []
test_cases = {test_cases}
for i, test_case in enumerate(test_cases):
test_name = test_case.get('name', f'Test {{i+1}}')
input_val = test_case.get('input')
expected = test_case.get('expected')
function_name = test_case.get('function')
print(f"nRunning {{test_name}}:")
print(f"Input: {{input_val}}")
print(f"Expected: {{expected}}")
try:
if function_name and function_name in globals():
func = globals()[function_name]
if callable(func):
if isinstance(input_val, (list, tuple)):
result = func(*input_val)
else:
result = func(input_val)
passed = result == expected
test_results.append({{
'test_name': test_name,
'input': input_val,
'expected': expected,
'actual': result,
'passed': passed
}})
status = "✓ PASS" if passed else "✗ FAIL"
print(f"Actual: {{result}}")
print(f"Status: {{status}}")
else:
print(f"✗ ERROR: '{{function_name}}' is not callable")
else:
print(f"✗ ERROR: Function '{{function_name}}' not found")
except Exception as e:
print(f"✗ ERROR: {{str(e)}}")
test_results.append({{
'test_name': test_name,
'error': str(e),
'passed': False
}})
# Summary
passed_tests = sum(1 for test in test_results if test.get('passed', False))
total_tests = len(test_results)
validation_results['tests_passed'] = passed_tests
validation_results['total_tests'] = total_tests
validation_results['success_rate'] = passed_tests / total_tests if total_tests > 0 else 0
print(f"n=== VALIDATION SUMMARY ===")
print(f"Tests passed: {{passed_tests}}/{{total_tests}}")
print(f"Success rate: {{validation_results['success_rate']:.1%}}")
test_results
"""
return self.python_repl.run(validation_code)
This phenomonreptool category
python_repl = PythonREPLTool()
validator = ResultValidator(python_repl)
Here, we take our Python Rept Tool tool (Python_Repl) and create the result of each text. This Wiring confirms any code you are available immediately in default verification measures, to close the loop in operation and test assessment.
python_tool = Tool(
name="python_repl",
description="Execute Python code and return both the code and its output. Maintains state between executions.",
func=python_repl.run
)
validation_tool = Tool(
name="result_validator",
description="Validate the results of previous computations with specific test cases and expected properties.",
func=lambda query: validator.validate_mathematical_result(query, {})
)
Here, we threaten our multiplication methods and verification into Langchain tools, and give them clear words and explanations. The agent can remove Python_Repl to activate the code and effect_validator to check the finalization against your prescribed procedures.
prompt_template = """You are Claude, an advanced AI assistant with Python execution and result validation capabilities.
You can execute Python code to solve complex problems and then validate your results to ensure accuracy.
Available tools:
{tools}
Use this format:
Question: the input question you must answer
Thought: analyze what needs to be done
Action: {tool_names}
Action Input: [your input]
Observation: [result]
... (repeat Thought/Action/Action Input/Observation as needed)
Thought: I should validate my results
Action: [validation if needed]
Action Input: [validation parameters]
Observation: [validation results]
Thought: I now have the complete answer
Final Answer: [comprehensive answer with validation confirmation]
Question: {input}
{agent_scratchpad}"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"tools": "python_repl - Execute Python codenresult_validator - Validate computation results",
"tool_names": "python_repl, result_validator"
}
)
At the top of the Template Template Template template as the Home of the First Reason (“Imaging”), selecting from Python_rePl and output tools to use the code and check the vindicated location. By describing the Chain-of Chain-Dutorized Tools and their Examples of the Tools and their Examples of Use, Directing the Agency to:
class AdvancedClaudeCodeAgent:
def __init__(self, anthropic_api_key=None):
if anthropic_api_key:
os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key
self.llm = ChatAnthropic(
model="claude-3-opus-20240229",
temperature=0,
max_tokens=4000
)
self.agent = create_react_agent(
llm=self.llm,
tools=[python_tool, validation_tool],
prompt=prompt
)
self.agent_executor = AgentExecutor(
agent=self.agent,
tools=[python_tool, validation_tool],
verbose=True,
handle_parsing_errors=True,
max_iterations=8,
return_intermediate_steps=True
)
self.python_repl = python_repl
self.validator = validator
def run(self, query: str) -> str:
try:
result = self.agent_executor.invoke({"input": query})
return result["output"]
except Exception as e:
return f"Error: {str(e)}"
def validate_last_result(self, description: str, validation_params: Dict[str, Any]) -> str:
"""Manually validate the last computation result"""
if 'test_cases' in validation_params:
return self.validator.validate_algorithm_correctness(description, validation_params['test_cases'])
elif 'expected_structure' in validation_params:
return self.validator.validate_data_analysis(description, validation_params['expected_structure'])
else:
return self.validator.validate_mathematical_result(description, validation_params)
def get_execution_summary(self) -> Dict[str, Any]:
"""Get summary of all executions"""
history = self.python_repl.get_execution_history()
return {
'total_executions': len(history),
'successful_executions': len([h for h in history if not h['error']]),
'failed_executions': len([h for h in history if h['error']]),
'execution_details': history
}
This improved AdvalClaidecodecontecont game is all single, easy-useed: an anthropic claude client (using a Recruit_vialid_vialid_vialid_vialid Question. tested; Validate_last_result () reflects further hooks of further tests; And find_summary () provides a short report on all abbreviations that you have made (many winners, failed, and their details).
if __name__ == "__main__":
API_KEY = "Use Your Own Key Here"
agent = AdvancedClaudeCodeAgent(anthropic_api_key=API_KEY)
print("🚀 Advanced Claude Code Agent with Validation")
print("=" * 60)
print("n🔢 Example 1: Prime Number Analysis with Twin Prime Detection")
print("-" * 60)
query1 = """
Find all prime numbers between 1 and 200, then:
1. Calculate their sum
2. Find all twin prime pairs (primes that differ by 2)
3. Calculate the average gap between consecutive primes
4. Identify the largest prime gap in this range
After computation, validate that we found the correct number of primes and that all identified numbers are actually prime.
"""
result1 = agent.run(query1)
print(result1)
print("n" + "=" * 80 + "n")
print("📊 Example 2: Advanced Sales Data Analysis with Statistical Validation")
print("-" * 60)
query2 = """
Create a comprehensive sales analysis:
1. Generate sales data for 12 products across 24 months with realistic seasonal patterns
2. Calculate monthly growth rates, yearly totals, and trend analysis
3. Identify top 3 performing products and worst 3 performing products
4. Perform correlation analysis between different products
5. Create summary statistics (mean, median, standard deviation, percentiles)
After analysis, validate the data structure, ensure all calculations are mathematically correct, and verify the statistical measures.
"""
result2 = agent.run(query2)
print(result2)
print("n" + "=" * 80 + "n")
print("⚙️ Example 3: Advanced Algorithm Implementation with Test Suite")
print("-" * 60)
query3 = """
Implement and validate a comprehensive sorting and searching system:
1. Implement quicksort, mergesort, and binary search algorithms
2. Create test data with various edge cases (empty lists, single elements, duplicates, sorted/reverse sorted)
3. Benchmark the performance of different sorting algorithms
4. Implement a function to find the kth largest element using different approaches
5. Test all implementations with comprehensive test cases including edge cases
After implementation, validate each algorithm with multiple test cases to ensure correctness.
"""
result3 = agent.run(query3)
print(result3)
print("n" + "=" * 80 + "n")
print("🤖 Example 4: Machine Learning Model with Cross-Validation")
print("-" * 60)
query4 = """
Build a complete machine learning pipeline:
1. Generate a synthetic dataset with features and target variable (classification problem)
2. Implement data preprocessing (normalization, feature scaling)
3. Implement a simple linear classifier from scratch (gradient descent)
4. Split data into train/validation/test sets
5. Train the model and evaluate performance (accuracy, precision, recall)
6. Implement k-fold cross-validation
7. Compare results with different hyperparameters
Validate the entire pipeline by ensuring mathematical correctness of gradient descent, proper data splitting, and realistic performance metrics.
"""
result4 = agent.run(query4)
print(result4)
print("n" + "=" * 80 + "n")
print("📋 Execution Summary")
print("-" * 60)
summary = agent.get_execution_summary()
print(f"Total code executions: {summary['total_executions']}")
print(f"Successful executions: {summary['successful_executions']}")
print(f"Failed executions: {summary['failed_executions']}")
if summary['failed_executions'] > 0:
print("nFailed executions details:")
for i, execution in enumerate(summary['execution_details']):
if execution['error']:
print(f" {i+1}. Error: {execution['error']}")
print(f"nSuccess rate: {(summary['successful_executions']/summary['total_executions']*100):.1f}%")
Finally, we take AdturancesCluaUleCodEcte with anthropic API Key, submit the four-number query questions, data analyzing, and printing each ML), and printing each other. Finally, gathering and showing a summary of summary, a complete run, success, failure, and error information, writing agent's Live “run run.
In conclusion, we develop a powerful AdvelClaidecececececed adapting of the seam by combining messages that include creating the establishment of the establishment. Its spine, the ment is not ready for Python Sniptets; It is running down and testing their accuracy against your prescribed procedure, closing the Repotheck Loop automatically. Whether you make a Prime-Number number, mathematical data test, the algorithm, or the flow of the ML performance, or the pattern ensures trust and recession.
View the letter of writing in Githubub. All credit for this study goes to research for this project. Also, feel free to follow it Sane and don't forget to join ours 95k + ml subreddit Then sign up for Our newspaper.
Asphazzaq is a Markteach Media Inc. According to a View Business and Developer, Asifi is committed to integrating a good social intelligence. His latest attempt is launched by the launch of the chemistrylife plan for an intelligence, MarktechPost, a devastating intimate practice of a machine learning and deep learning issues that are clearly and easily understood. The platform is adhering to more than two million moon visits, indicating its popularity between the audience.
