Lungiselela izimpendulo zombuzo ngempendulo yomsebenzisi usebenzisa i-Amazon Bedrock eshumekeze ukushumeka nokudutshulwa okumbalwa

Ukwenza ngcono ikhwalithi yokuphendula kwemibuzo yomsebenzisi kubalulekile kwizicelo eziqhutshwa yi-AI, ikakhulukazi labo abagxile ekwanelisekeni komsebenzisi. Isibonelo, umsizi osuselwa ku-HR Chat kufanele alandele ngokuqinile izinqubomgomo zenkampani futhi aphendule esebenzisa ithoni ethile. Ukuphambuka kusuka kulokho kungalungiswa ngempendulo evela kubasebenzisi. Lokhu okuthunyelwe kukhombisa ukuthi i-Amazon Bedrock, ehlanganiswe nedatha yempendulo yomsebenzisi kanye nokudutshulwa okumbalwa, kunganciphisa izimpendulo zokwaneliseka okuphezulu komsebenzisi. Ngokusebenzisa i-Amazon Titan Umbhalo Eshuddings V2, sibonisa ukuthuthuka okubalulekile ngokwezibalo ngekhwalithi yokuphendula, okwenza kube yithuluzi elibalulekile lezicelo ezifuna izimpendulo ezinembile nezenziwe ngezifiso.
Izifundo zakamuva ziveze inani lempendulo nokuncipha ekucobeni izimpendulo ze-AI. Ukusebenza okusheshayo ngempendulo yabantu kuhlongoza indlela ehlelekile yokufunda kwimpendulo yomsebenzisi, ukuyisebenzisa kumamodeli we-itaratively amamodeli wokuqondanisa okuthuthukile nokuqina. Ngokufanayo, ukusebenza kwe-Black-Box Prompt Optimization: Ukuvumelanisa amamodeli amakhulu ezilimi ngaphandle kokuqeqeshwa okuyisibonelo okubonisa ukuthi ukubuyiselwa kwemali okucatshangwayo kukhulisa ukufundwa okuvunyelwe okumbalwa ngokuhlanganisa isimo esifanele, okunika amandla ikhwalithi engcono yokubonisana kanye nekhwalithi yempendulo. Ukwakha kule mibono, umsebenzi wethu usebenzisa i-Amazon Titan Umbhalo oshumekile v2 imodeli ukwenza kahle izimpendulo ezisetshenziswa ngempendulo yomsebenzisi etholakalayo kanye nokudutshulwa okumbalwa, ukuzuza ukuthuthuka okubaluleke kakhulu kwizibalo ekwanelisekeni komsebenzisi. I-Amazon Bedrock isivele inikezela ngesici esizenzakalelayo sokusebenza kahle kokuzivumelanisa nezimo ngokuzenzakalela nokwandisa ukukhuthaza ngaphandle kokufaka okungeziwe komsebenzisi. Kulesi sipongo sebhulogi, sibonisa ukuthi singawasebenzisa kanjani imitapo yolwazi ye-OSS ngokwenza kahle ngokwezifiso ngokususelwa kwimpendulo yomsebenzisi kanye nokudutshulwa okumbalwa.
Sithuthukise isixazululo esisebenzayo sisebenzisa i-Amazon Bedrock ethuthukisa ngokuzenzakalelayo izimpendulo zosizo lwezingxoxo ngokususelwa kwimpendulo yomsebenzisi. Lesi sixazululo sisebenzisa ukushumeka nokushumpuka okumbalwa. Ukukhombisa ukusebenza kwekhambi, sasebenzisa idatha yempendulo yomsebenzisi etholakala emphakathini. Kodwa-ke, lapho usebenzisa ngaphakathi enkampanini, imodeli ingasebenzisa idatha yayo yempendulo enikezwe abasebenzisi bayo. Nge-Dataset yethu yokuhlola, ikhombisa ukwanda okungu-3.67% kwizikolo zokweneliseka komsebenzisi. Izinyathelo ezibalulekile zifaka:
- Buyisa idatha yempendulo yomsebenzisi etholakala esidlangalaleni (yalesi sibonelo, idatha yempendulo enobunye ekugwingweni kobuso).
- Dala ukushumeka kwemibuzo ukuze kuthathwe izibonelo ezifanayo, usebenzisa i-Amazon Titan Umbhalo Smileddings.
- Sebenzisa imibuzo efanayo njengezibonelo zokudubula ezimbalwa ukukhiqiza okulungiselelwe okulungiselelwe.
- Qhathanisa ukukhuthaza okulungiselelwe ngokumelene nezingcingo eziqondile zolimi olukhulu (LLM).
- Qinisekisa ukuthuthuka kwekhwalithi yokuphendula usebenzisa i-T-test ebilindelwe amasampula.
Umdwebo olandelayo uwukubuka konke kohlelo.
Izinzuzo ezisemqoka zokusebenzisa i-Amazon Bedrock yilezi:
- Ukuphathwa Kwezingqalasizinda Zezingqalasizinda – Hambisa kanye nesikali ngaphandle kokuphatha ingqalasizinda ye-Complex Machine Learning (ML)
- Kuqiza kahle – Khokhela kuphela lokho okusebenzisayo nge-Amazon Bedrock Pay-as-you-go modeling pricing model
- Enterprise-grade ezokuphepha – Sebenzisa izici zokuphepha ezi-AWS ezakhelwe ngaphakathi kanye nezimpawu zokuhambisana
- Ukuhlanganiswa okuqondile – Hlanganisa izinhlelo zokusebenza ezikhona ngomthungo kanye namathuluzi omthombo ovulekile
- Izinketho eziningi zemodeli – Finyelela amamodeli weSisekelo ahlukahlukene (FMS) wamacala ahlukile wokusebenzisa
Lezi zingxenye ezilandelayo zijula kakhulu kulezi zinyathelo, ukuhlinzeka ngama-snippets wekhodi kusuka kubhukwana ukukhombisa inqubo.
Izimfuneko
Izimfuneko zokuqalisa zifaka i-akhawunti ye-AWS nge-Amazon Bedrock Access, Python 3.8 noma kamuva, futhi zilungiselelwe iziqinisekiso ze-Amazon.
Ukuqoqwa kwedatha
Silandile idatha yempendulo yomsebenzisi kusuka ekuggqeni kobuso, i-LLM-Blender / I-Unified-feedback. I-Dataset iqukethe izinkambu ezifana conv_A_user
(umbuzo womsebenzisi) futhi conv_A_rating
(Isilinganiso kanambambili; 0 kusho ukuthi umsebenzisi akayithandi futhi 1 kusho ukuthi umsebenzisi uyayithanda). Le khodi elandelayo ithola kabusha idatha futhi igxile emasimini adingekayo ukuze kunikezwe isizukulwane nokuphendula impendulo. Ingaqhutshwa e-Amazon SageMaker Notebook noma incwadi ye-jupyter enokufinyelela e-Amazon Bedrock.
Isampula yedatha kanye nokushumeka isizukulwane
Ukuphatha inqubo ngempumelelo, sahlakaza imibuzo engama-6,000 kusuka kudatha. Sisebenzise i-Amazon Titan ETITAN EMBEDDINGS V2 ukudala ukushumeka kwale mibuzo, ukuguqula umbhalo kube yizethulo eziphezulu ezivumayo ezivumela ukuqhathanisa okufanayo. Bona ikhodi elandelayo:
Ukudutshulwa okumbalwa okushukumisela ukusesha okufanayo
Ngale ngxenye, sathatha izinyathelo ezilandelayo:
- Sampula imibuzo eyi-100 kusuka kudathabhethi yokuhlola. Ukuhlunga imibuzo eyi-100 kusisiza ukuba sisebenzise izilingo eziningi ukuze siqinisekise isixazululo sethu.
- Ukufana kwe-coskhote cosine (isilinganiso sokufana phakathi kwama-veectors amabili angewona ama-zero) phakathi kokushumeka kwalemibuzo yokuhlola kanye nokushumeka okugciniwe okungu-6,000.
- Khetha imibuzo ephezulu ye-K emibusheni yokuhlola ukuze isebenze njengezibonelo ezimbalwa zokudubula. Sibeka k = 10 ukulinganisela phakathi kokusebenza kwe-computational kanye nokwehlukahlukana kwezibonelo.
Bona ikhodi elandelayo:
Le khodi ihlinzeka ngomongo wokudutshulwa ambalwa ombuzo ngamunye wokuhlola, usebenzisa ukufana kwe-cosline ukuthola ukufana okusondele kakhulu. Le mibuzo yesibonelo kanye nempendulo isebenza njengomongo owengeziwe ukuqondisa ukusebenza kahle. Umsebenzi olandelayo ukhiqiza ngokushesha ukudutshulwa okumbalwa:
Le khasi get_optimized_prompt
Umsebenzi wenza imisebenzi elandelayo:
- Umbuzo womsebenzisi kanye nezibonelo ezifanayo zikhiqiza ngokushesha okudutshulwa.
- Sisebenzisa i-Shot Pramp embalwa kwi-LLM Call ukukhiqiza ngokushesha okulungiselelwe.
- Qiniseka ukuthi imiphumela ikufomethi elandelayo usebenzisa i-Pydantic.
Bona ikhodi elandelayo:
Le khasi make_llm_call_with_optimized_prompt
Umsebenzi Sebenzisa umbuzo osheshayo nowomsebenzisi owenziwe nge-LLM (Anthropic's Claude Haiku 3.5) Call ukuthola impendulo yokugcina:
Ukuhlolwa kokuqhathanisa kwezimpikiswano ezenziwe kahle nezingavinjezelwe
Ukuqhathanisa ukushesha okulungiselelwe ngesisekelo (kuleli cala, ngokushesha okungekho emthethweni), sichaze umsebenzi owabuyisa umphumela ngaphandle kwe-teeries elungiselelwe:
Umsebenzi olandelayo wakha impendulo yombuzo usebenzisa ukusesha okufanayo kanye nesizukulwane esisheshayo esisezingeni eliphakeme sayo yonke imibuzo kwi-Dataset yokuhlola:
Le khodi iqhathanisa izimpendulo ezikhiqizwe futhi ngaphandle kokudutshulwa okuningana, ukusetha idatha yokuhlola.
Llm njengojaji kanye nokuhlaziywa kwezimpendulo
Ukuze sinciphise ikhwalithi yokuphendula, sisebenzise i-LLM njengejaji lokuthola izimpendulo ezilungiselelwe futhi ezingafakwanga ukuze zihambisane nombuzo womsebenzisi. Sisebenzise i-Pydantic lapha ukuze siqiniseke ukuthi okuphumayo kunamathela kuphethini oyifunayo ka-0 (i-LLM ibikezela impendulo ngeke ithandeke ngumsebenzisi) noma 1 (I-LLM ibikazela impendulo izothandwa ngumsebenzisi):
I-LLM-A-A -AGH ingukusebenza lapho i-LLM ingahlulela ukunemba kombhalo kusetshenziswa izibonelo ezithile ezinesisekelo. Sisebenzise lokho kusebenza lapha ukwahlulela umehluko phakathi komphumela otholwe kusuka ekushesheni okwenziwe kahle futhi okungalungisiwe. I-Amazon Bedrock yethule ukusebenza kwe-LLM-A-A-A-A-A-A-FASTIAL ngoDisemba 2024 engasetshenziselwa amacala anjalo. Emsebenzini olandelayo, sibonisa ukuthi i-LLM isebenza kanjani njengomhlaziyi, ishaya izimpendulo ezisuselwa ekuvumelaniseni kwazo nokwaneliseka ngedatha ephelele yokuhlola:
Esibonelweni esilandelayo, saphinda le nqubo izivivinyo ezingama-20, sithwebula amaphuzu aneliseka kwabasebenzisi ngaso sonke isikhathi. Isikolo se-Dataset siyisamba senani lokwaneliseka kokwanelisa komsebenzisi.
Ukuhlaziywa kwemiphumela
Ishadi lomugqa olandelayo libonisa ukuthuthukiswa kokusebenza kwesisombululo esilungisiwe ngaphezulu kweyodwa engavunyelwe. Izindawo eziluhlaza zibonisa ukuthuthuka okuhle, kanti izindawo ezibomvu zibonisa izinguquko ezingezinhle.
Njengoba siqoqe imiphumela yezilingo ezingama-20, sabona ukuthi okushiwo amazinga okugculisa kusuka ekuphumeni okungavinjelwe kwakungu-0.8696, kanti okushiwo izikolo zokwanelisa kusuka ku-0.9063. Ngakho-ke, indlela yethu ihluza isisekelo ngo-3.67%.
Ekugcineni, sasiqhuba isivivinyo sesampula esibhangqiwe sokuqhathanisa izikolo zokwaneliseka ezivela ekuphakameni okwenziwe kahle futhi okungaguquki. Lokhu kuhlolwa kwezibalo kuqinisekiswe ukuthi nokwenza kahle ikhwalithi yempendulo esheshayo ithuthukise kakhulu. Bona ikhodi elandelayo:
Ngemuva kokusebenzisa i-T-test, sathola inani le-P-FAST 0.000762, elingaphansi kuka-0.05. Ngakho-ke, ukuthuthukiswa kokusebenza kokuphakanyiswa okwenziwe kahle ngaphezulu kokukhuthaza okungavunyelwe kubalulekile ngokwezibalo.
Ukuthathwa Key
Sifunde lokhu okulandelayo okubalulekile okuvela kulesi sixazululo:
- Ukushayela okumbalwa okudutshulwa kuthuthukisa impendulo yombuzo – Sebenzisa izibonelo ezimbalwa ezimbalwa zokudutshulwa kuholela ekuthuthukisweni okukukhulu kwikhwalithi yempendulo.
- I-Amazon Titan Umbhalo Embeddings inika amandla ukufana okuvela ngokweqiniso – Imodeli ikhiqiza ukushumeka okwenza kusesha okusebenzayo okusebenzayo.
- Ukuqinisekiswa kwezibalo kuqinisekisa ukusebenza ngempumelelo – Inani le-P-FURE ye-0.000762 libonisa ukuthi indlela yethu eyenziwe kahle ithuthukisa ukwaneliseka komsebenzisi.
- Umthelela webhizinisi othuthukisiwe – Le ndlela ihambisa inani lebhizinisi elilinganiswayo ngokusebenzisa ukusebenza komsizi we-AI. Ukwanda kwama-3.67% ezinhlakeni zokweneliseka kuhumushela imiphumela ebonakalayo: Iminyango ye-HR ingalindela ukuhumusha okungafanele kwenqubomgomo (ukunciphisa ubungozi bokuhambisana namaqembu), namaqembu ezinsizakalo zamakhasimende angabona ukuncishiswa okukhulu kumathikithi akhuphukile. Ikhono lekhambi lokufunda ngokuqhubekayo kwimpendulo kwakha uhlelo lokuzithuthukisa olukhulisa i-ROI ngokusheshe ngaphandle kokudinga ubuchwepheshe obukhethekile be-ML noma ukutshalwa kwengqalasizinda.
Ukulinganiselwa
Yize uhlelo lubonisa ukuthembisa, ukusebenza kwalo kakhulu kuncike ekutholakaleni kanye nevolumu yempendulo yomsebenzisi, ikakhulukazi ezinhlelweni zesizinda esivaliwe. Ezimweni lapho kutholakala khona izibonelo ezimbalwa zezimpendulo, imodeli ingahlwitha ukukhiqiza amandla anengqondo noma yehluleke ukuthwebula ama-nuances okuthandwa ngumsebenzisi ngempumelelo. Ngokwengeziwe, ukuqaliswa kwamanje kuthatha ukuthi impendulo yomsebenzisi ithembekile futhi ithumele izidingo ezibanzi zomsebenzisi, okungenzeka ukuthi zinjalo njalo.
Izinyathelo ezilandelayo
Umsebenzi wesikhathi esizayo ungagxila ekwandiseni lolu hlelo ukuxhasa imibuzo nezimpendulo ezahlukahlukene nezimpendulo, okwenza ukuba zikwazi ukusebenzelana okubanzi ezisekelweni zabasebenzisi ezahlukahlukene. Ukufaka amasu wokubuyisa amandla okuthola amandla (ama-rag) kungaqhubekisela phambili ukuphatha umongo nokunemba kwemibuzo eyinkimbinkimbi. Ngokwengeziwe, izindlela zokuhlola ukubhekana nemikhawulo yezimo ezingezona zempendulo, ezinjengesizukulwane sokwenziwa noma ukufundwa kokufunda, kungenza indlela eqinile futhi iguquguquke.
Ukugcina
Kulokhu okuthunyelwe, sikhombise ukusebenza kahle kokusebenza kahle kombuzo kusetshenziswa i-Amazon Bedrock, ukushumpuka okumbalwa, kanye nempendulo yomsebenzisi ukuthuthukisa kakhulu ikhwalithi yokuphendula. Ngokuvumelanisa izimpendulo ngokuncamelayo okuqondene nomsebenzisi, le ndlela iyethela isidingo semodeli ebizayo enhle, okwenza kube lula ukuthi kusebenze izinhlelo zezwe zangempela. Ukuguquguquka kwayo kwenza ukuthi ilungele abasizi abasuselwa engxoxweni kuzo zonke izizinda ezahlukahlukene, njenge-ecommerce, insizakalo yamakhasimende, kanye nezimpendulo ezisezingeni eliphakeme, lapho kuqondaniswa khona.
Ukuze ufunde kabanzi, bheka izinsiza ezilandelayo:
Mayelana nababhali
Tanay Chowdhury Ungusosayensi wedatha esikhungweni se-Ai Innovation esikhungweni seWebhu ye-Amazon.
Parth patwa Ungusosayensi wedatha esikhungweni se-Ai Innovation esikhungweni seWebhu ye-Amazon.
Yingwei yu ngumphathi wesayensi osetshenzisiwe esikhungweni se-Ai Innovation Center e-Amazon Web Services.