Reactive Machines

Impel ithuthukisa isipiliyoni se-Automotive Dealership isipiliyoni ngama-LLMS ahlelwe kahle ku-Amazon SageMaker

Lokhu okuthunyelwe kubhalwe phansi ngeTatia Tsmindashvili, Ana Kolkhidashvili, Guram Dentoshvili, Dachi Choladze kusuka Implel.

Impoqo iguqula izitolo zezimoto nge-AI-Powered Customent Customer Lifecycle Management Solution eshayela imisebenzi yokuthengisa kanye nokusebenzisana kwamakhasimende. Umkhiqizo wabo oyisisekelo, ukuthengisa i-AI, uhlinzeka ngokuzibandakanya kwamakhasimende okwenziwe ngohlobo lwezinsuku zonke, ukuphatha imibuzo eqondene nemoto kanye nemibuzo yezimoto yokuhweba kanye nezimali. Ngokufaka esikhundleni semodeli yazo yolimi lwesithathu okhona wesithathu (LLM) nge-Meta Llam Model ehlelwe kahle esetshenziswe ku-Amazon Sagemaker AI, impoqo ithole ukunemba okuthuthukile okungu-20% kanye nezilawuli zezindleko ezinkulu. Ukuqaliswa kusetshenziswa isici esibanzi esisethwe se-Amazon SageMaker, kufaka phakathi ukuqeqeshwa kwesisindo, i-AWQ-Aware yokuqonda isisindo (i-AWQ), kanye neziqukathi ezinkulu zemodeli (LMI). Le ndlela eqondene nesizinda ayithuthukisiwe kuphela ikhwalithi yemiphumela kodwa futhi ithuthukise ukuphepha nokusebenza okuqhubekayo okuqhathaniswa nama-LLMS ajwayelekile.

Kulokhu okuthunyelwe, sabelana ngendlela exakile ukuthi ithuthukisa kanjani isipiliyoni sezimoto sokuthengisa ngamakhasimende ngama-llms ahleliwe ku-sagemaker.

Ukuthengiswa kwe-Impl ai

I-Impl ikhulisa ukuthi abathengisi bezimoto baxhuma kanjani namakhasimende ngokuletha okuhlangenwe nakho okwenziwe ngezifiso kuzo zonke izifundo zokuthinta – kusuka ekuthengeni kokuqala ukuze uthenge, ngenkathi unikeza amakhono okwenziwa ngezinto ezenziwe ngezinto ezenziwe ngezimoto zokuxhumana kwamakhasimende. I-Sales Ai isebenzisa i-AI ekhiqizayo ukuhlinzeka ngezimpendulo ezisheshayo ubusuku nemini kumakhasimende azoba ngamakhasimende nangombhalo. Lokhu kuhlangana okugcinwe ngesikhathi sesigaba sokuqala sohambo lokuthenga lwekhasimende lokuthenga kwamakhasimende kuholela ekubunjisweni kwama-aphoyintimenti noma ukuxhumana okuqondile namaqembu okuthengisa. I-AI ye-AI inezici ezintathu eziyisisekelo zokuhlinzeka ngokubandakanyeka kwamakhasimende okungaguquki:

  • Ukufingqa – Ukufingqa Ukuzibandakanya Kwamakhasimende Esedlule Ukuthola Inhloso Yekhasimende
  • Isizukulwane sokulandela – Inikeza ukulandela okungaguquki kumakhasimende akhuthazelele ukusiza ukuvikela uhambo lokuthenga kwamakhasimende okufakiwe
  • Ukuphendula Ukwenza okuthandwa nguwe – Izimpendulo zomuntu siqu zokuvumelanisa nemiyalezo yokuthengisa kanye nokucaciswa kwamakhasimende

Izici ezimbili ezibalulekile ziqhume ukuguqula uguquko kusuka kumhlinzeki wazo okhona we-LLM: isidingo sokwenza ngokwezifiso zemodeli kanye nokwenza kahle izindleko esikalini. Imodeli yamanani entengo yabo yangaphambilini yangemuva yaba yizindleko-njengoba ukuthengiselana amavolumu akhula, kanye nemikhawulo ekuhlelekeni okuhle kuvimbile ukuthi basebenzise ngokuphelele idatha yabo yokuphathelene ukuze bathuthukise amamodeli. Ngokusebenzisa imodeli ye-meta Lla ye-Meta Llama enhle ku-sagemaker, impoqo ithole okulandelayo:

  • Ukuqagela izindleko ngamanani aphethwe, ukunciphisa izindleko ze-per-tokelen
  • Ukulawulwa Okukhulu Ukuqeqeshwa Imodeli kanye nokwenza ngokwezifiso, okuholela ekuthuthukisweni kwama-20% ezicini eziyinhloko
  • Ukucutshungulwa okuphephile kwemininingwane yokuphathelene ngaphakathi kwe-akhawunti yabo ye-AWS
  • Ukulinganisa okuzenzakalelayo ukuze uhlangabezane ne-spike kwisidingo se-infence

Ukubuka konke

I-Impl ikhethe iSagemaker Ai, insizakalo yamafu ephethwe ngokuphelele eyakha, izitimela, kanye nezindlela zokufunda umshini (ML) amamodeli asebenzisa ingqalasizinda ye-AWS, amathuluzi, nokuhamba komsebenzi ukuze uhlele kahle i-Meta Lla Llam ye-AI AI. I-Meta Llama iyimodeli enamandla, elungele kahle imisebenzi eqondene nomkhakha ephathelene namandla aphezulu okulandela imiyalo, ukusekelwa kwamawindows anwetshiwe, nokusingathwa kahle kolwazi lwesizinda.

Impoqo esebenzisa i-sagemaker LMI iziqukathi zokufaka ukuboniswa kwe-LLM ngama-sagemaker endpoints. Lezi zitsheni zedokodo ezakhiwe ngenhloso zinikezela ukusebenza okwenziwe kahle kwamamodeli afana ne-meta llama ngokusekelwa kwamamodeli we-lora ahlelwe kanye ne-awq. I-Impel isetshenziswe i-lora enhle, inqubo esebenza kahle futhi engabizi kakhulu yokuhlehlisa i-LLMS yezinhlelo zokusebenza ezikhethekile, nge-Amazon SageMaker Studio Notebooks egijima kwi-ML.p4de.24xlarge Stances. Le ndawo ephethwe yenziwe lula inqubo yentuthuko, inika amandla i-Impel's Team ukuthi ihlanganise umthungo amathuluzi omthombo avulekile avulekile afana nePytorch ne-TorchPune yokuqeqeshwa ngemodeli. Okwe-Model Optimization, i-Implel isebenzise amasu we-AWQ ukunciphisa usayizi wemodeli nokuthuthukisa ukusebenza kwe-infence.

Emkhiqizweni, kushukumise ama-empoponds asetshenziswayo kuma-ML.G6E.12Xlarge times, anikwe amandla yi-NVIDIA GPUS enememori ephezulu, efanelekile ukusebenzela amamodeli amakhulu afana neMeta Llam ngempumelelo. I-Impel isebenzise isici se-sagemaker esakhelwe ngaphakathi ekulinganiseni okuzenzakalelayo ukukala ngokuzenzakalelayo iziqukathi ezisuselwa ezicelo ezifanayo, ezisiza ukufeza izimfuno zokukhiqiza eziguqukayo ngenkathi zisebenza ngezindleko.

Umdwebo olandelayo ukhombisa ukwakhiwa kwesixazululo, ukukhombisa imodeli ukuhleleka okuhle nokuthathwa kwamakhasimende.

I-Impl's Sales Ai Rencecture yokwakha.

Ithimba le-R & D le-Impl libambisene namaqembu ahlukahlukene ama-AWS, kufaka phakathi iqembu layo le-akhawunti, iqembu le-Genai Stustem, nethimba lesevisi yeSagemaker. Leli qembu elibonakalayo lasebenzisana ngaphezulu kwama-Sprints aholela ekutholeni okuhle kwe-Ai Lales AI Usuku lokubukeza ukuhlolwa kwemodeli, ukusebenza kwe-Benchmark SAGEMAKER PHELA, bese ulungiselela amasu wokulinganisa, bese ukhomba amasu we-sagemaker. Lokhu kubambisana okubandakanya amaseshini obuchwepheshe, imihlangano yokuqondanisa yamasu, kanye nezindleko nezingxoxo zokusebenza zokusebenza ngemuva. Ukubambisana okuqinile phakathi kwe-Indel kanye nama-AWS kwakutholile ekufezekiseni amandla aphelele wemodeli ephakeme ye-Finel.

Inqubo yokuhlola imodeli elungele kahle

Ukuguqulwa kwe-Impel ku-Meta Llama ye-Meta Llama elungiselelwe ukuthuthuka kuwo wonke amamethrikhi asemqoka ngokuthuthuka okubonakalayo ekuqondeni amagama akhethekile ezenzelwa izimoto futhi akhiqize izimpendulo ezenzelwe wena. Ukuhlolwa kwabantu okuhlelekile kuveze izithuthukisi ezindaweni ezibucayi zokuxhumana kwamakhasimende: izimpendulo ezenziwe ngezifiso zithuthuke kusuka kuma-73% kuye ku-86% ukunemba, ukugxuma kwesizukulwane semiyalezo ku-50%, kuqhamuke ku-59% kuya ku-92% ukunemba. I-screenshot elandelayo ikhombisa ukuthi amakhasimende axhumana kanjani ne-Sales AI. Inqubo yokuhlola imodeli efakwe empoqo yeqembu le-R & D Grading ahlukahlukene asetshenziswa amacala ahlinzekwa ngumhlinzeki we-LLM onamandla kanye namamodeli ahlelwe kahle.

Ukusebenzelana Kwezinsizakalo Kwekhasimende okubonisa impendulo ezenzakalelayo yokuthengisa okunikeza Ukuqokwa kokuqokwa kweToyota Highlander Xle

Isibonelo sokusebenzisana kwamakhasimende nge-AI.

Ngaphezu kwekhwalithi yokukhipha, i-Implel elinganiselwe latency kanye nokusebenzisa ukuguqulela ukulungela ukukhiqizwa kwemodeli. Kusetshenziswa ama-AWScurl ngezicelo ze-HTTP ezisayiniwe ze-SIGV4, iqembu likuqinisekisile lokhu kuthuthukiswa kumametriki okusebenza kwangempela komhlaba, ukuqinisekisa okuhlangenwe nakho kwamakhasimende kahle ezindaweni zokukhiqiza.

Kusetshenziswa amamodeli aqondene nesizinda ukuze kusebenze kangcono

Ukuvela kwe-Impl Ukuvela kokuthengisa ai kuqhubekele phambili ku-LLM okujwayelekile kwe-LLM kuya kumodeli eqondene nesizinda, enhle. Kusetshenziswa idatha yokusebenzisana kwamakhasimende engaziwa, impoqo enhle ihlelwe imodeli yesisekelo esitholakala esidlangalaleni, okuholela ekuthuthukisweni okuningana okubalulekile. Imodeli entsha ikhombise ukukhuphuka kwama-20% ngokunemba kwezici eziyisisekelo, ukukhombisa ukuqondiswa kwezimoto ezithuthukisiwe zokuqonda kanye nokusetshenziswa kwewindows okusebenzayo. Ngokuguqukela kule ndlela, okuphoqelelayo kutholwe izinzuzo ezintathu eziyinhloko:

  • Ukuvikeleka kwedatha okuthuthukisiwe ngokusebenza kwendlu ngaphakathi kwama-akhawunti abo ama-AWS
  • Ukwehlisa ukuthembela kuma-API angaphandle kanye nabahlinzeki beqembu lesithathu
  • Ukulawulwa Okukhulu Kokusebenza Kokulinganisa Nokwenza Ngokwezifiso

Lezi zithuthuka, ezihambisana nokwenza ngcono kwekhwalithi ebalulekile yekhwalithi, ukuguquguquka kwekhwalithi okuqinisekisiwe kuya kwimodeli ye-AI eqondene ne-AI eqondene ne-AI ye-AI ye-AI.

Ukunwebisa i-AI Innovation ekuthengisweni kwezimoto

Ukuphumelela kwe-Impl kusebenzisa amamodeli ahlelwe kahle ku-sagemaker kusungule isisekelo sokwengeza amakhono ayo e-AI ukusekela uhla olubanzi lwamacala asetshenzisiwe embonini yezimoto. I-Impel ihlela ukuguqukela kumamodeli asendlini, eqondene nesizinda ukwelula izinzuzo zokunemba okuthuthukile kanye nokuhamba phambili komkhiqizo wazo we-AI ngokutholwa kokubuyiselwa kwemali okutholakalayo, ukushayela umsebenzi okuthuthukile, ukushayela umsebenzi we-agentic. Lokhu okusha kungasiza ukuletha izinhlelo eziguqukayo, zokwazi isimo eziklanyelwe ukuxhumanisa, ukucabanga, kanye nokwenza imisebenzi yazo zonke izinto zezezimoto ezibuyisanayo.

Ukugcina

Kulokhu okuthunyelwe, sixoxile ukuthi i-Endel isithuthukise kanjani isipiliyoni samakhasimende ezithunyelwayo nge-LLMS elungisiwe ku-sagemaker.

Izinhlangano ezibheka izinguquko ezifanayo kumamodeli ahlelwe kahle, okuhlangenwe nakho okuyisisekelo kukhombisa ukuthi ukusebenza nge-AWS kungasiza kanjani ukufeza ukuthuthuka kokunemba kanye nama-Model ai calls ngenkathi enza amakhono wesikhathi eside we-AI ahambelana nezidingo ezithile zomkhakha. Xhuma nethimba lakho le-akhawunti noma vakashela i-Amazon Sagemaker AI ukuze ufunde ukuthi i-sagemaker ingakusiza kanjani ukufaka futhi uphathe amamodeli ahlelwe kahle.


Mayelana nababhali

Nicholas scozzafiva Ingabe ukwakhiwa kwezixazululo eziphezulu ku-AWS, kugxile kumakhasimende wokuqalisa. Ngaphambi kokuba nendima yakhe yamanje, wasiza amakhasimende amabhizinisi azulazule uhambo lwawo lwefu. Unothando ngengqalasizinda yefu, ezenzakalelayo, ama-devops, nokusiza amakhasimende ukwakha nokukala kuma-AWS.

Sam sudakoff ungumphathi we-akhawunti ophezulu ngama-AWS, agxile kumasu wokuqalisa amaqhinga. USam ubheka phambili emathafeni e-Technology, AI / ML, kanye nezisombululo ze-AWS. Uthando lukaSam lulele ekuqaleni kokuqala nokushayela i-SAS kanye ne-AI Transformtions. Ngokuphawulekile, umsebenzi wakhe onama-aws aphezulu wokuqalisa ama-ISV agxile ekwakheni ubudlelwano obuhle kakhulu ekwakheni ubuchwepheshe bebhizinisi le-Bridge Enterprise ngezixazululo zokuqala ezintsha, ngenkathi ugcina ukubambelela ngokuqinile ngokuphepha kwedatha nezidingo zobumfihlo.

Vivek gangasani Ingabe ukwakhiwa kwezixazululo ezikhethekile zokutholwa kokutholwa kuma-AWS. Usiza izinkampani ezivelayo ze-AI ezivelayo zakha izixazululo ezintsha zisebenzisa izinsizakalo ze-AWS kanye ne-ashevuzelo compute. Njengamanje, ugxile ekuthuthukiseni amasu okuhleleka okuhle nokwenza kahle ukusebenza kokuqashwa kwamamodeli amakhulu olimi. Esikhathini sakhe samahhala, i-Vivek ikujabulela ukuhamba ngezinyawo, ukubuka ama-movie, nokuzama ama-cuisines ahlukile.

UDmitry waklama Ingabe ukwakhiwa kwe-AI / ML solutions okuphezulu kwe-AI / ML kuma-AWS, kusiza amakhasimende aklama futhi akhe izixazululo ze-AI / ML. Umsebenzi we-Dmitry uhlanganisa uhla lwamacala okusetshenziswa kwe-ML, ngentshisekelo eyinhloko ekwenzeni i-AI eqinile, ukufunda okujulile, kanye nokulinganisa ml ngaphesheya kwebhizinisi. Uye wasiza ezinkampanini ezimbonini eziningi, kufaka phakathi umshuwalense, izinsizakalo zezezimali, izinsiza, kanye nokuxhumana ngocingo. Ngaphambi kokujoyina ama-AWS, uDmitry wayengumdwebi wezakhiwo, unjiniyela, kanye nobuholi bezobuchwepheshe kuma-Data Analytics kanye nezinkundla zokufunda ngomshini embonini yezimali zezezimali.

Tatia tsmindashvili ungumcwaningi omkhulu wokufunda ojulile ku-Implel ne-MSC eBioomedical Engineering kanye nemininingwane yezokwelapha. Uneminyaka engaphezu kwengu-5 yesipiliyoni e-AI, enezintshisakalo ezihamba ama-LLM agents, ukumbumbuluzwa, kanye ne-neuroscience. Ungamthola ku-LinkedIn.

Ana kolkhidashvili Ingabe umqondisi we-R & D empondweni, lapho ahola khona imizamo ye-AI egxile kumamodeli amakhulu olimi kanye nezinhlelo zengxoxo ezenzakalelayo. Uneminyaka engaphezu kwengu-8 yesipiliyoni e-AI, enakekela amamodeli amakhulu ezilimi, izinhlelo ezizenzakalelayo zengxoxo, ne-NLP. Ungamthola ku-LinkedIn.

Guram dentoshvili Ingabe umqondisi we-Engineering no-R & D kwimpoqo, lapho ahola khona ukuthuthukiswa kwezixazululo ze-AI ezihlelekile futhi zishayela izinto ezintsha emikhiqizweni yenkampani ye-AI. Waqala umsebenzi wakhe ePulsar Ai njengonjiniyela wokufunda umshini futhi wadlala indima ebalulekile ekwakheni ubuchwepheshe be-AI ehambelana nemboni yezimoto. Ungamthola ku-LinkedIn.

Dachi choladze Ingabe iSikhulu Esiyisikhulu Esithuthukile kwi-Impl, lapho aholela khona imizamo ngecebo le-AI, emisha, kanye nentuthuko yomkhiqizo. Uneminyaka engaphezu kwengu-10 yesipiliyoni esonweni lamabhizinisi nobuhlakani bokufakelwa. UDachi ngumsunguli we-Pulsar Ai, ekuqaleni kwe-AI Startup yaseGeorgia, okwakuhlanganiswa kamuva nge-Impl. Ungamthola ku-LinkedIn.

UDeepAm Mishra Ingabe umeluleki we-SR wokuqalisa ama-AWS futhi weluleka ukuqala kwe-ML, ukuphepha kwe-AI, kanye nokuphepha kwe-AI. Ngaphambi kokujoyina ama-AWS, i-PEEPAM yasungulwa futhi yahola ibhizinisi le-AI kwaMicrosoft Corporation kanye ne-Wipro Technologies. UPeepam ubelokhu esomabhizinisi osolwa ngokweserial kanye nomtshali zimali, esungule ama-4 AI / ML Startups. I-Deepam isuselwa endaweni ye-NYC Metro futhi ijabulele ukuhlangana nabasunguli be-AI.

Source link

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button